Stability Analysis of a SIS Epidemic Model with Standard Incidence∗
نویسنده
چکیده
In this paper, we study the global properties of classic SIS epidemic model with constant recruitment, disease-induced death and standard incidence term. We apply the Poincaré-Bendixson theorem, Dulac’s criterion, and the method of Lyapunov function to establish conditions for global stability. For this system, three Dulac functions and two Lyapunov functions are constructed for the endemic steady state.
منابع مشابه
Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملDynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملENTROPY FOR DTMC SIS EPIDEMIC MODEL
In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.
متن کاملThe Dynamical Behaviors in a Stochastic SIS Epidemic Model with Nonlinear Incidence
A stochastic SIS-type epidemic model with general nonlinear incidence and disease-induced mortality is investigated. It is proved that the dynamical behaviors of the model are determined by a certain threshold value [Formula: see text]. That is, when [Formula: see text] and together with an additional condition, the disease is extinct with probability one, and when [Formula: see text], the dise...
متن کاملBifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.
A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. ...
متن کامل